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Designing chips that work

By Davip MAyY, GEOFF BARRETT AND DAVID SHEPHERD
Inmos Ltd, 1000 Aztec West, Almondsbury, Bristol BS12 45¢, UK.

The complexity of integrated circuits continues to grow, and chips with over 108
transistors will be in widespread use by the late 1990s. These chips will combine
general purpose processors with subsystems for communications and other
specialized tasks. They will be far too complex for the design to be tested, and
manufacturing volumes will be far too high for the design to be wrong!

Mathematical techniques have already been applied to the design of parts of vist
chips. Most of this work is experimental, and requires an unusual combination of
engineering, mathematical and programming skills. Sometimes new theoretical work
is needed, and specialized tools may have to be constructed. Despite these difficulties,
mathematical techniques are playing an important role in the design of micro-
processors at Inmos, and techniques suitable for incorporation in standard
computer-aided design systems are emerging.

1. Introduction

The idea of using formal program specification and proof techniques in an Inmos
product first arose at the Royal Society, in a Discussion Meeting on ‘Mathematical
Logic and Programming Languages’ (Hoare & Shepherd 1985). One of the lectures
concerned the Gypsy program verification system, and sparked off a discussion about
whether program verification was practical, in view of the extra time needed over the
‘standard method’ of program design. The lecturer, D. Good, suggested that verified
programming took about five times as long, and tried to justify the extra time spent
to a rather sceptical audience.

At the time of the meeting, we had become concerned about a rather short
program which had taken very little time to write, but was taking a long time to test.
We had extended our programming language, Occam, so as to include floating point
operations. As there was no floating point hardware in the transputer, we had written
a small subroutine package to provide the necessary operations. The package was not
large, but some complexity had arisen from the need to support the emerging IEEE
floating point standard. The package was being tested by executing all of the
arithmetic operations, with all rounding modes, on a vast number of operand values,
comparing results with a reference implementation.

It seemed that it would be worth trying to develop a formally verified version of
the package. Even if this were to take ten times as long as the original package had
taken, it would eliminate the time-consuming testing, and reduce the overall length
of time. At the time, we had no clear idea how to proceed with the verification, but
we discussed the idea with several members of the Oxford University Programming
Research Group. The result was that Geoff Barrett (then working at the PRG, now
at Inmos) re-expressed the IEEE standard in Z, and developed a version of the
package from the Z specification.

Phil. Trans R. Soc. Lond. A (1992) 339, 3-19 © 1992 The Royal Society
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4 D. May, G. Barrett and D. Shepherd

The formally derived package was completed whilst the testing of the original
package was still in progress. We were pleased about this for two reasons. Firstly, it
demonstrated a much more reliable and cost-effective technique for developing
algorithms for computer arithmetic. Secondly, we had become concerned about the
rapidly approaching problem of verifying the hardware floating point unit of a new
transputer, the T800.

2. The T800 floating point unit

The T800 floating point unit consists of a datapath controlled by microcode. The
microcode includes intricate algorithms for floating point multiplication and division,
and handles a large number of special cases resulting from denormalized numbers
and infinities.

It is common practice to check the design of floating point arithmetic units by
simulation. This has the same problems as testing a software package, and is more
time-consuming because a simulator executes the tests much more slowly than
software compiled and executed directly. For this reason, bugs in floating point
arithmetic units are widespread.

In the design of the floating point unit of the T800, the formally derived Occam
floating point package was used as a high-level implementation. A low-level
implementation, also written in Occam, was used to describe the detailed operation
of the hardware of the floating point unit. The high-level and low-level
implementations were then compared by using Occam transformations. By
transforming one representation into the other, the two representations were shown
to be equivalent. At the time of the T800 design, an Occam transformation system
(Goldsmith 1988) was already under development at Oxford University, and this was
used to mechanize these transformations.

The various stages of simple development used are shown in the next section
as an example. For the example we consider the development of microcode that
implements the conditional jump, ¢j, instruction on the current transputer. The
development described here follows the same path as was used for parts of the IMS
T800 floating point unit microcode.

(a) High level specification
We first introduce the variables representing the processor state:

__CPU

Areg, Breg, Creq: WORD
Iptr: WORD

This schema introduces names for the values which define the state of the cpu. The
names Areg, Breg, Creg denote the values in a stack of registers, and Ipir denotes the
value of the instruction pointer.

Phil. Trans R. Soc. Lond. A (1992)
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Designing chips that work 5
The conditional jump instruction is specified by the following schema:
—CJ
ACPU
Operand? : WORD

Areg = 0 =>Iptr’ = (Iptr+ 1)+ Operand?
Areg # 0= Iplr’ = Iptr +1
Areqg’ = Breg

Breg’ = Creg

This schema specifies how the cpu state changes as a conditional jump is executed.
In the upper part of the schema, ACPU denotes that the cpu state changes. By
convention, the values of the state variables are represented by Areg, Breg and Iptr
before the operation and by Areg’, Breg” and Iptr” after the operation. The instruction
operand is denoted by an input to the schema, Operand ?.

The bottom portion of the schema consists of predicates which constrain the values
of the state variables. The predicates here state that if the value of Areg is 0 (the
machine representation of false) then the jump is taken, using the Operand ? as an
offset of the next instruction. In this case, the final value of the register stack is
unspecified. If the value of Areg is not O then no jump is taken and the register stack
is popped up one place.

(b) Occam transformations

The algebraic semantics of Occam given in Roscoe & Hoare (1988) consists of a set
of laws which define the language constructs. The algebraic semantics has been
shown to be consistent with the denotational semantics (Roscoe 1985) establishing
the validity of the laws. The set of laws is complete so any pair of equivalent
programs can be transformed into one another using them.

A transformation law can be used to transform one program into another whose
observable behaviour is equivalent. Many transformation laws are ‘obviously true’
and are regularly used by programmers; for example sequential composition of
processes is associative:

SEQbinassoc:

SEQ SEQ
P SEQ
SEQ = P
Q Q
R R

This is the law SEQbinassoc. Others are more complex and include preconditions for
validity but, with a bit of effort, can be seen to be true.

If a sequence of transformations can be found to transform one program into
another then the two programs are known to be equivalent. If, in addition, one of
these programs is known to be a correct implementation of a specification then the
correctness of the other can be inferred.

Phil. Trans R. Soc. Lond. A (1992)
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6 D. May, G. Barrett and D. Shepherd

(i) An example lvapslormel i

As an example consider the following program fragment

SEQ
X:=A
Y:=Y4+X

These two assignment statements can be merged into one multiple assignment
statement. First the law ASid is used to add an identity assighment to ecach
statement.

ASid:
Yy =ey = zi=e¢

for any y distinct from x and assignable in the current scope.
giving the program:
SEQ

X, Y:=A,Y
Y, X:=Y+X, X

Next the law 4ASperm is applied to the second statement

ASperm:

<z li=1..m> = <egli=1..n>
<z, li=1..n>:=<e |i=1.n>
for any permutation 7 of {1...n}

giving
SEQ

X, Y:=A,Y
X, Y:=X,¥Y+X

Finally these two statements are merged by the law SEQcomb

SEQcomb:

SEQ
x:=e¢ = z:=flefx]
x:=f

giving

X, Y:=A,Y+A

The transformation performed by the sequence of steps given above is the trivial
type of transformation that programmers often do automatically and the use of
proof rules and a transformation system may seem excessive in this case. However,
people often make mistakes with ‘trivial’ operations and as the programs being
manipulated become larger the use of a formal basis for the program transformation
becomes vital.

(¢) The Occam transformation system

To aid the process of transforming programs a simple interactive transformation
system has been implemented in the language ML (Goldsmith 1988; Harper et al.
1986). A program can be parsed into this system and then manipulated by the user.

Phil. Trans R. Soc. Lond. A (1992)
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Designing chips that work 7

VAL cj.entry IS 0
VAL cj.true IS 1
VAL cj.false IS 2
VAL FINISHED IS 3
BYTE micro.inst:

SEQ
micro.inst := cj.entry
iptr := iptr + 1

INT ALUresult
BOOL ALUresultZ:
WHILE (micro.inst <> FINISHED)
SEQ
aregslave, bregslave := areg, breg
IF
micro.inst = cj.entry
SEQ
ALUresult := 0 - areg
ALUresultZ := (ALUresult = 0)
IF
ALUresultZz
micro.inst := cj.false
(NOT ALUresultZ)
micro.inst := cj.true
micro.inst = cj.true
SEQ
areg := bregslave
breg := creg
micro.inst := FINISHED
micro.inst = cj.false
SEQ
ALUresult := iptr + operand
iptr := ALUresult
micro.inst := FINISHED

Figure 1. Low level Occam representation of microcode.

All the basic laws of Roscoe & Hoare (1988) are implemented inside the system
along with some extra ones; the system is extensible and new laws (that have been
proven correct) can be added if required. Regularly executed sequences of
transformations can be programmed as ML functions to give more powerful higher
level transformations. The example transformation shown above was programmed
as the transformation law combas which itself was used in more powerful
transformations. The basic transformations often have only a small and localized
effect but when suitably combined they can perform significant transformations
which, being constructed from correct component transformations, are known to be
correct themselves.

The transformation system user can select which transformation laws to apply and
examine the effects of these transformations. The fact that the transformation
system is being used provides the verification of the equivalence between the initial
program and the transformed end result. It would be feasible to modify the system
so that it produced the list of transformations which constitute the proof for
independent verification. This would allow the transformation that was performed to
be provided as part of the completed design.

Phil. Trans R. Soc. Lond. A (1992)
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8 D. May, G. Barrett and D. Shepherd

cj.entry:

XbusFrom0 YbusFromAreg

ALUminus

NextInst (COND ALUresultZ -> cj.false, cj.true)
cj.true:

AregFromBregSlave

BregFromCreg

OregFrom0

NextInst FINISHED
cj.false:

XbusFromIptr YbusFromOreg

ALUplus

IptrFromALU

OregFrom0

NextInst FINISHED

Figure 2. Microcode assembler source.

(d) Occam representation of microcode

The conditional jump instruction can be specified at a high level in Occam as the
program:

{areg = Areg A breg = Breg A creg = Creg A iptr = Iptr A operand =

Operand %}
IF
areg=20
SEQ
iptr:= (iptr +1) +4+operand

{areg =0 A breg =Breg A creg = Creg A iptr = (Iptr+ 1)+ Operand 7}
areg <> 0
SEQ
iptr:=iptr+1
{areg = Areg A breg = Breg A creg = Creg A iptr = Iptr+1}
areg, breg:=breg, creg
{areg = Breg A breg = Creg A creg = Creg A iptr = Iptr+1}

Annotations from the pre/post condition analysis have been added to show that this
has the desired effect of taking the jump if the value of areg was 0 and popping the
top valu= off the stack otherwise.

The task is now to derive from this ‘specification’ level Occam an equivalent
‘implementation’ level program. This derivation is achieved through a sequence of
refinements which use the semantics preserving transformations of Occam. The
microcode program is shown in figure 1.

This program can be shown to be equivalent to the high level program by a series
of transformations. In practice, the number of transformations is large, and in some
cases the intermediate programs produced are also large. This means that it is
essential that the transformations are performed by computer.

The low-level program can easily be converted into the microcode actually used to
generate the microcode read-only memory shown in figure 2. However, it is
interesting to note that a bug in the translation program used for this purpose
resulted in a fault in an early version of the T800. Our experience has been that it

Phil. Trans R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

,\
A
' . \
ya N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Designing chips that work 9

is essential either to be able to verify the output of such programs, or to be able to
verify the programs themselves.

(e) Was 1t effective ?

It is now four years since the T800 was introduced. Two bugs have been discovered
in the floating point microcode. One of these arose from an error in the translation
program used to convert microcode Occam to microcode assembler. The other
resulted from manual ‘tidying’ of the generated assembler. The use of formal
development techniques and program transformation was therefore highly successful
as no errors have been found in the areas covered by these techniques.

The main shortcoming of the work performed on the IMS T800 was that the formal
machine-assisted correctness process only handled part of the design — the trans-
formation from high level Occam to low level ‘microcode Occam’. Reasoning about
the correctness of the algorithms used was performed by hand, although in principle
such proofs could have been machine-checked. Also, no attempt was made to prove
the correctness of the implementation of the hardware used to execute the
microcode.

3. Totally verified systems

The successful verification of the T800 floating point microcode led us to speculate
about the possibility of verifying other parts of the transputer. We wanted to be able
to verify the hardware controlled by the microcode, and indeed the combination of
the microcode and hardware. At the same time, others had become interested in
verifying programs and compilers, especially for safety critical systems. As a result,
in 1988 Inmos, Oxford, Cambridge and SRI initiated a collaborative project to
investigate totally verified systems.

We believe that over the next decade the use of formal verification will increase in
a wide range of microprocessor applications. The majority of 32-bit microprocessors
are currently used in personal computers but it is predicted that this will shift to
embedded applications as early as 1993. Some of these applications are high-volume
and will involve significant amounts of software. The costs of correcting design faults
will therefore be high, and the costs of losing customers (who will not expect to have
to reboot a telephone) will be even higher. In addition, many embedded applications
will require a combination of a microprocessor and specialized hardware to be
integrated on a single chip, giving rise to the need for verification of hardware and
software in combination.

The sarEMOS project aims to provide a demonstration of a totally verified system.
Such a system consists of a specification language to capture design requirements,
a programming language which is amenable to formal reasoning, a program verifier
to verify that a program is an implementation of a specification, a verified processor
to run the programs on, and a verified compiler to translate the programming
language into the processor instruction set.

Correctness is ensured by first verifying programs against their specifications.
Correctness of compiled code is ensured by implementing the compiler algorithm
inside a theorem prover; this means that compilation consists of constructing a proof
that the compiled code is correct. This approach avoids the danger of having a
correct compiler algorithm incorrectly implemented. Finally the correct execution of
the compiled code is ensured by a verification of the processor. All the verification
work is done inside the HOL theorem prover (Gordon 1986).

Phil. Trans R. Soc. Lond. A (1992)
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10 D. May, G. Barreit and D. Shepherd

An emphasis has been placed on mechanical verification for two reasons. The first
is that, from experience, there is a real danger of errors in hand verification ; often
when attempting to prove an obvious ‘theorem’ in HOL it turns out to be untrue! The
second and, in the context of hardware design, the more important reason is that it
is desirable to be able to rerun the proof of a design after a small modification to
ensure that no unexpected dependencies have introduced errors. This task needs to
be as automatic as the final design-rule checking phase in current cap design
systems.

On the hardware development side the intention is to provide tools that can work
alongside existing cap tools. This means providing interfaces to existing cap
standards such as viaDL and design databases. Verification needs to be introduced as
extra tools for the designer rather than a new encapsulated system.

The fact that the project has looked at all levels of a system design has produced
some interesting ideas. For example, the issue of modelling real time behaviour of a
program has some architectural implications on the processor design. If instruction
execution times do not depend on instruction operands, it is possible to simplify the
verification of real-time programs by separating the timing verification (in temporal
logic) from the functional verification (in Hoare logic).

The results of a project like sarEMos may not be particularly impressive in
themselves (for example a small subset of a six-year-old processor like the T414), but
the importance is in building up the basic techniques, theories and tools which will
form a basis for more realistic design verification later. Of particular importance are
techniques which allow verification of hardware and software in combination, as this
capability is needed not only for microcode and embedded control programs, but also
for the construction of verified compilers and hardware synthesizers.

4. A new design: the T9000

In 1989, Inmos embarked on the design of a new transputer, now launched as the
T9000. The T9000 was to be a completely new design, retaining instruction-set
compatibility with the T800, but with a complete re-implementation of the
processor, and with a new virtual channel processor. The virtual channel processor
would allow any number of logical channels to be multiplexed onto the four physical
communication links. The T9000 would be implemented on a new manufacturing
process, and the combined result of extra interconnect layers and finer geometries
was to allow about five times as many transistors as the T800.

Although we had already successfully used formal design methods in the T800
work, it was not easy to introduce them into the T9000 design. Many engineers are
accustomed to verifying designs by simulation, and have little experience in the use
of formal methods. In addition, many of the notations and tools produced by
mathematicians for formal design work are unfamiliar to engineers, with the result
that engineers will avoid using them until the complexity of the design makes it
essential. Bringing together engineers and mathematicians was a continuing
challenge throughout the T9000 work.

The first problem to emerge was that of establishing that the heavily pipelined
processor of the T9000 actually implemented the same operations as the unpipelined
T800. Variations would obviously run the risk of making existing software and
compilers useless, eliminating the claimed advantage of ‘compatibility with the
T800’. Equally important was the problem of ensuring that the pipeline did not
Phil. Trans R. Soc. Lond. A (1992)
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Designing chips that work 11

deadlock or livelock. The task of verifying the correct operation of the pipeline has
been performed at Oxford, and is described in A. W. Roscoe’s paper. One problem in
the pipeline verification has been that a substantial amount of design had taken place
before the need for formal design and verification techniques became clear. This has
had the well-known effect of complicating the verification process.

The second major problem to arise was that of designing and verifying the virtual
channel processor. The design of the relatively simple communications hardware of
the T800 had given rise to several problems, including a design fault which took over
a month to locate. This is not surprising, as the communications hardware of the
T800 has complex interactions with the processor and with the environment. It
consists of a collection of concurrent state machines, and is not amenable to the
methods used for the verification of the floating point unit.

5. Designing the T9000 channel processor

The 79000 virtual channel processor (vep) is a device which allows any number of
logical connections between two processors to be implemented by a single physical
connection. Whereas the specification of a single logical connection is straight-
forward, the protocols which are needed in the hardware implementation are
sufficiently complicated that some degree of automatic verification is essential.

The theory and methods which are involved in the vcp verification are derived
from research which has been carried on over the past 10 years. The emergence of a
theory which is suitable for the automatic verification of the vep implementation has
been made possible by the conjunction of two lines of research. The first of these
results from Hoare’s work on communicating sequential processes (csp). This
culminated in the mathematical model of csp reported in Brookes & Roscoe (1985).
The mathematical model for csp captures a theory of correctness in a precise and
formal way. The theory of correctness formalizes a set of criteria by which to judge
when an implementation meets the conditions of its specification. This fundamental
basis for automatic verification has proved to be a controversial subject. If the
correctness criteria are too strict, then some implementations which intuitively feel
correct will be ruled out. If the correctness criteria are too lenient, then
implementations which are, intuitively, incorrect will be allowed. The model for csp
captures a set of criteria which is most appropriate for our purposes.

The second line of research which has contributed to the verification is that which
grew from Milner’s calculus of communicating systems (ccs). The model for this
theory involves the formalization of state machines. A state machine can be in one
of several different states. In each state, the machine has a number of transitions
available. Associated with each transition is the name of event (an interaction with
its environment or an internal action). Having made a transition, the machine may
find itself in a new state. The theory of ccs is explained in Milner (1989).

An early attempt to produce a method for judging correctness of state machines
can be found in Barrett (1988). Barrett’s main object is to find a method by which
to prove the correctness of the transputer implementation of Occam. To do this, both
the semantics of Occam and the transputer implementation are expressed in terms
of state machines. The correctness of the implementation is shown using an ad hoc
adaptation of a technique which is used to prove the equivalence of state machines.
This technique turns out to be incomplete. In other words, there are some correct
implementations which cannot be proved using this technique. However, following

Phil. Trans R. Soc. Lond. A (1992)
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12 D. May, G. Barrett and D. Shepherd

the work of Gardiner & Morgan (1992), we have developed a complete method of
proof for the correctness of state machines.

Although the complete theory of correctness is accessible to and can be applied by
an engineer with a good understanding of mathematics, this process is time
consuming and does not, in general, exercise the skills which make a good engineer.
In the course of the verification of the vcp, it became evident that it would be useful
to ignore the full power of the correctness theory and, instead, to produce a fully
automatic tool which can be used to decide the correctness of finite state machines.
This subset of the theory identifies a subset of state machines (those which can
assume a finite number of states) for which there is a decidable, complete theory. A
decidable theory is one which may be fully automated. This means that it is possible
to implement a computer program which can ascertain the correctness of an
implementation. The advantage of this over the mathematical theory is that the
engineer is free to use her intuition in the design of correct implementations but may
then submit her implementation to formal verification.

The correctness-checking tool has been successfully applied to the design of the
T9000 ver and is now being applied to the design of the control link (the mechanism
which regains control of a processor which is running a bad program). As yet,
however, the tool is still in a prototype phase. Work is in progress to improve the user
interface, particularly in the area of diagnostics for incorrect implementations. The
problem here is to provide some useful clues as to what has gone wrong when an
implementation is not correct; a ‘yes’ or ‘no’ answer is often not enough. There are
great opportunities here to be able to pinpoint very precisely the source of an error,
thereby decreasing the amount of time spent debugging an implementation.

(@) The vep specification
The T9000 vcp can be specified as the interleaving of a number of channels:

VOP = |||I20; " i: CHAN.

This expression specifies that each of the channels should behave independently. We
will not devote much attention to the specification of the vcp as a whole but rather,
we will study the behaviour and implementation of individual channels.

A channel provides a point-to-point link between two processes. A single processor
may execute any number of processes, but at most one may use any particular
channel for input or output. When a process ouputs a value to a channel, it is
descheduled until a corresponding input process has received the value. Conversely,
when a process inputs a value from a channel, it is descheduled until a corresponding
output process has sent a value along the channel. While a process is descheduled, it
may not engage in any actions. In particular, a descheduled process may not input
or output from a channel.

In the formal specification of the channel, we consider a number of variables which
describe, for instance, the number of inputs which have been started but not yet
completed. The inequalities which govern the channel behaviour are given below.
The expressions #input and #output stand for the number of inputs or outputs which
have begun and #run(input) and #run(output) stand for the number of inputs or
outputs which have terminated:

(1) no input terminates before it has begun:

0 < INRI = #input — #Frun(input)

Phil. Trans R. Soc. Lond. A (1992)
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runi runi runi
b .
(a) () input_runi input_runi
Input_runi
input output output
runo
runo runo @)
()
input input
input_runi input_runi
output

Figure 3. State machines corresponding to the channel specification. (a) 0 <INRI = #in-
put — #run(input) < 1. (b) 0 < OUTRI = #output — #run(input) < 2. (¢) 0< INRO = #input —
#run(output) < 2. (d) 0 < OUTRO = #output — #run(output) < 1.

(2) an input cannot terminate before it has been matched by an output:
0 < OUTRI = #output — #run(input)

(3) an output cannot terminate before it has been matched by an input:
0 < INRO = #input — #run(output)

(4) no output terminates before it has begun:
0 < OUTRO = #output — #run(output).

Part of the specification formalizes the assumptions which are made about the way
processes behave and how channels are joined up:
(1) there is never more than one active input:

INRI < 1
(2) there is never more than one active output:
OUTRO < 1.

To be able to define a finite state machine using these variables, we must be able to
prove that each variable may only take on a finite range of values. This is clearly true
of the variables INRI and OUTRO, but we must prove that the other variables are
also bounded. The proof proceeds as follows:

(1) the combined number of active inputs and outputs is given by both
OUTRO+INRO and INRI+OUTRO. Therefore:

OUTRI+INRO = INRI+OUTRO.
Phil. Trans R. Soc. Lond. A (1992)
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(a) eom_runo
ack_runo (b) oom
eom_runo
aok_runo
p
ack
output
output
ack
eop eom
[4 d ok
( ) eom_runo ( ) st
eom_runo eom
[+
sp

Figure 4. Specification of the output machine. (@) No output terminates before it has begun; (b)
messages begin with output and end with an end of message token; packets may only be sent
when there is an unterminated message ; acknowledges cause a reschedule if and only if there are
no unterminated messages; (¢) packets are terminated with an end of packet or end of message
token; (d) start of packet alternates with acknowledgements; an output is rescheduled when
sending end of message if and only if all packets have been acknowledged.

(2) the following inequalities can be summed to give a bound of 2 on the combined
number of active outputs and inputs:

0<INRIL<1 0<OUTROKL1
0 < INRI+OUTRO < 2.

(3) using the equality and the inequality from above gives bounds on the number
of inputs and outputs which have not caused a scheduling action:

0<OUTRI L2
0 < INRO < 2.

The fact that there may be two output commands before an input is scheduled
arises from the sequence of events: input, output, run(output), output. At this stage,
the only action which is possible is to reschedule the input.

The state transition diagrams which correspond to each of the variables arc shown
in figure 3. Each of the diagrams corresponds to one of the specification variables.
The commands and responses of the vep have the effect of changing the values of the

Phil. Trans R. Soc. Lond. A (1992)
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oom_runi
( b) Input_enq_runi
sp_eng
— input
Inpu
input_enq Input_enq
eom
input_enq ack
input_enq_runi (d)
sp_enq
sp Input_enq
Input_enq_runi

Figure 5. Specification of the input machine. (@) No input terminates before it has begun ; receiving
a start of packet causes an acknowledge to be queued if and only if there is an active input;
receiving an end of message token causes an input to be rescheduled if and only if there is an active
input; (b) an input is rescheduled if and only if it has been matched by a complete message; (c)
input causes an acknowledge to be queued if and only if there is a packet with no queued
acknowledge; (d) acknowledges are only sent if and only if they have been queued.

variables (for instance, input increases the variable INRO) and this is noted on the
diagrams by an arrow labelled with the action. Each of the diagrams may be
interpreted as a csp process which restricts the overall behaviour of the channel. All
of the restrictions are combined in parallel to give the specification of a channel:

CHAN = INRI | OUTRI || INRO || OUTRO.

(b) The transputer link protocol verification

A channel must be implemented in a distributed way between two processors. One
processor IN is at the input end of the channel and has responsibility for rescheduling
input processes. The other processor OUT' is at the output end and has responsibility
for rescheduling output processes. The processes are connected by a link, LINK. Each
message along the channel is broken up and transmitted through the link as a
sequence of packets.

The output side processor transmits a packet which is terminated with a symbol
which indicates whether more packets are to come. The input side acknowledges each
packet.

Phil. Trans R. Soc. Lond. A (1992)
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Table 1. Events which the machine records

event meaning
runi reschedule input
runo reschedule output
input receive input command
input_enq receive input command and queue a packet acknowledgement
Input_eng_runi receive input command, queue a packet acknowledgement and reschedule
input
output receive output command
sp send/receive start of packet
sp—enq receive start of packet and queue a packet acknowledgement,
eop send/receive end of packet token
eom send/receive end of message token
eom_runi receive end of message token and reschedule input
€eom._runo send end of message token and reschedule output
ack send/receive packet acknowledgement
ack_runo receive acknowledgement and reschedule output

The diagrams which correspond to the input and output machines are shown in
figures 4 and 5. The events which the machines recognize are given in table 1.

The final element in the implementation is the link which joins the input machine
to the output machine. The function of the link is to pass the packets from the output
side to the input side and to pass acknowledgements in the other direction. The
specification of the link is not formalized here, we will only refer to the formalization
as LINK.

The inner part of the vcp implementation can now be described by the parallel
composition of the three parts:

ILO = IN | LINK || OUT.

Some of the link transactions have external side-effects which cause processes to be
rescheduled. These actions are renamed so that they reflect only the external side-
effect:

EXT = ILO[runi/eom_runi, runo/eom_runo, runo/ack_runo].
The packet actions which do not have any external side effects are hidden:
IMP = EXT\{sp, eop, eom, ack}.

The correctness of the implementation is established automatically according to the
correctness theory. Formally, this states that the traces of the specification and the
implementation are identical:

traces(CHAN) = traces(IMP).

6. The design process

Any component as complex as the T9000 contains a number of different
subcomponents such as the processor, floating point unit and communications
processor. Each of these has an associated set of design techniques and
representations. There are many different representations in common use and these
operate at varying levels of abstraction. Examples are an English specification, a

Phil. Trans R. Soc. Lond. A (1992)
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Designing chips that work 17

timing diagram, a Z specification, an Occam functional simulation, a vHDL
description, the silicon layout, a circuit diagram. It is inevitable that a design will be
expressed in several of these notations.

In our experience, it is essential that the descriptions of a design in different
notations can be checked against each other. Many of the descriptions are large, so
that it is desirable to use notations suitable for computer-assisted manipulation to
simplify the construction of checkers and simulators; in this context pictures and
English are not suitable. The available techniques for checking the equivalence of
two descriptions are the following:

1. Visual ingpection. This widely used technique is inconsistent with the scale of
current designs. It is extremely error prone and time consuming, and is not
consistent with the need for fast design iteration.

2. Simulation of the design in two notations and comparison of the results (for
example to compare an Occam functional description with an HpL implementation).
This technique has its uses, but requires the construction of a test-suite of data to be
run on the two simulations. It is easy to forget that the construction of the test-suite
can easily take more time than the design itself, and also that the speed of simulation
can be a major problem.

3. Automatic compilation (synthesis) of one description from another. This is
likely to be reliable and fast, but depends on the correctness of the compiler.

4. Automatic comparison of the two descriptions. This is likely to be reliable and
fast, but again depends on the correctness of the comparison tool.

5. Proof by hand that one description (the implementation) satisfies another (the
specification). This technique is only possible where current theory is well enough
developed. Also, it is not consistent with the need for fast design iteration (but there
are cases where re-working a proof by hand can be much faster than simulation).

6. Computer-assisted or computer-checked proof. This technique is only applicable
where current theory and tools are adequate.

The scale of current designs makes it important to design the design process itself.
In particular, it is important to plan the notations to be used to represent each part
of the design at each of the various levels of abstraction, and to identify the
techniques to be used to establish equivalence between the representations. This
makes it possible to expose weaknesses in the design process, especially those which
are likely to cause delays as a result of time-consuming (and unanticipated)
verification processes. At an early stage, it is often possible to develop new tools to
assist in the process.

New capabilities are needed in caD systems to support the use of verification tools.
Any design will involve a number of standard tools, together with the need for
specialized tools to be constructed as the design progresses. There is therefore a need
for design databases in which the method for comparing two representations of a
design is held as a program which takes as its parameters the two representations
together with other information specific to the comparison being made.

7. Future directions

In the past 10 years, vist designs have moved from 10° to 10 transistors. This has
been achieved not only by advances in manufacturing, but also by advances in
design techniques. Automated checking of silicon design rules and circuit
connectivity have emerged and become a standard part of commercial cAD systems.

Phil. Trans R. Soc. Lond. A (1992)
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In the next 10 years, designs will move to over 107 transistors, and this will require
a further advance in design techniques. Designs of this size must be constructed from
independent modules, and the behaviour of these modules and their interfaces must
be specified. Automated checking that the composition of such modules corresponds
to an overall specification will become an essential part of future cap systems.

An important development is the increasing use of synthesis tools. Much of the
control logic in the T9000 is produced by synthesis from vaDL descriptions.
Synthesizers will, in future, also support the construction of structures such as
microcoded datapaths. The result will be that the role of the engineer in vLs1 design
will change. The design of the basic cells used by the synthesizer is clearly an
electronic design task, with the cells being verified by simulation. The design of the
input to the synthesizer will not require skills in electronic design, but will require
extensive use of behavioral descriptions and programs, with associated specification,
transformation and proof tools.
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Discussion
W. A. Hu~nt (Computational Logic, Inc., U.S.A.). How is vapL formally related to
silicon and Occam ?

M. D. May. The compilation from vHDL into silicon is performed by commercial
silicon compilation programs (such as syNopsys) and we rely on their correctness. We
can provide some confidence in the correctness of the results of these programs by
simulation.

When considering the relation between Occam and vHDL it must be remembered
that we are using Occam programs written in a special style as source and we produce
a subset of vEDL. In this context it is possible to reason about correctness in a ‘semi-
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formal’” way; the correctness statement is along the lines of: if you hold the input
lines to the circuit at the values of the input variables of the procedure then at some
time the output wires will stabilize and will hold the same values as the output
variables of the procedure.

An important factor in the correctness is that the translation process consists of a
series of small ‘correct’ transformations on the Occam code followed by a simple
translation of a very small subset of Occam into viEpL which amounts to little more
than pretty-printing. In this way translation correctness is isolated from the issues
of program structure transformation (e.g. changing multidimensional arrays to one
dimension).

W. A. Hu~t. Why didn’t Dr May try to ‘cross-fertilize” the engineers and the formal
methods people ?

M. D. May. The abilities required for the electronic design of state-of-the-art visI
products are quite different from those required for the formal verification of the
designs. There is no quick way to train an electronic engineer in the use of formal
methods, nor to train a formal methods expert in electronic engineering. We have
therefore created design teams which include both areas of expertise. In time, it is
inevitable that some cross-fertilization will occur. This has happened at Inmos,
where such ‘experiments’ are encouraged !

E. M. CLarkE, Jr (Carnegie Mellon University, U.S.A.). I am interested in the
technique that is used for verifying finite-state hardware controllers. I realize that a
‘state explosion’ may occur when such controllers execute in parallel, and that it
may be difficult to compute the exact number of reachable states in the parallel
composition. However, is Dr May able to give an upper bound on the number of states
of a parallel composition, perhaps by computing the product of the sizes of the
component controllers ? New model-checking algorithms (based on the use of binary
decision diagrams) can handle systems with enormous numbers of states.

M. D. May. The moderate number of small state machines which are composed in
parallel to form the specification of a virtual channel does lead to a potentially large
number of states. The full specification contains eight state machines with two or
three states each, giving a potential number of 2° x 3% states. This is approaching the
performance limit of the most naive algorithms. We are currently working on
incorporating more sophisticated model-checking algorithms into our tool. However,
the problem which we are trying to solve is known to be NP-complete and we believe
that we will always be able to achieve a problem size which is beyond the abilities
of sophisticated algorithms and powerful supercomputers. Instead, we intend to use
the tool to check the correctness of a sequence of smaller refinements.

There are three benefits to our approach: it scales to any size of problem; the
refinement steps produce useful documentation about the structure of the design
which aids maintenance and comprehensibility ; the tools which will be necessary do
not require powerful supercomputers and will be widely available on standard
workstations.
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